Name \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Use the compound interest formulas $A=P\left(1+\frac{r}{n}\right)^{n t}$ and $A=P e^{r t}$ to solve.

1) Suppose that you have $\$ 8000$ to invest. Which investment yields the greater return over 6
2) \qquad years: 6.25% compounded continuously or 6.3% compounded semiannually?
A) $\$ 8000$ invested at 6.3% compounded semiannually over 6 years yields the greater return.
B) Both investment plans yield the same return.
C) $\$ 8000$ invested at 6.25% compounded continuously over 6 years yields the greater return.
3) Find the accumulated value of an investment of $\$ 1710$ at 6% compounded annually for 12
4) \qquad years.
A) $\$ 3440.86$
B) $\$ 3246.09$
C) $\$ 2941.20$
D) $\$ 2838.60$

Write the equation in its equivalent exponential form.
3) $\log _{5} 125=3$
A) $5125=3$
B) $125^{3}=5$
C) $5^{3}=125$
D) $3^{5}=125$
4) $\log _{2} 16=x$
A) $x^{2}=16$
B) $2^{x}=16$
C) $16^{x}=2$
D) $16^{2}=x$

Write the equation in its equivalent logarithmic form.

5) $6^{3}=216$
6) \qquad
A) $\log _{3} 216=6$
B) $\log _{216} 6=3$
C) $\log _{6} 216=3$
D) $\log _{6} 3=216$
7) $\sqrt[3]{125}=5$
A) $\log _{125} 3=\frac{1}{5}$
B) $\log _{5} 125=\frac{1}{3}$
C) $\log _{125} 5=\frac{1}{3}$
D) $\log _{5} 125=3$

Find the domain of the logarithmic function.
7) $f(x)=\ln (8-x)$
A) $(-\infty, 8)$ or $(8, \infty)$
B) $(-8, \infty)$
C) $(-\infty, 0)$
D) $(-\infty, 8)$
8) $f(x)=\log \left(\frac{x+5}{x-2}\right)$
A) $(2, \infty)$
B) $(-\infty,-5) \cup(2, \infty)$
C) $(-5,2)$
D) $(-\infty,-5)$

Use properties of logarithms to expand the logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator.
9) $\log _{5}\left(\frac{7 \cdot 11}{13}\right)$
9)
A) $\log _{5} 77-\log _{5} 13$
B) $\log _{5} 5$
C) $\log _{5} 7+\log _{5} 11-\log _{5} 13$
D) $\log _{5}\left(\frac{77}{13}\right)$
10) $\log _{5}\left(\frac{\sqrt[4]{x} \sqrt[3]{y}}{z^{2}}\right)$
10)
A) $4 \log _{5} x+3 \log _{5} y-2 \log _{5} z$
B) $\frac{1}{4} \log _{5} \mathrm{x} \cdot \frac{1}{3} \log _{5} \mathrm{y} \div 2 \log _{5} \mathrm{z}$
C) $\frac{4}{5} \log _{5} x+\frac{3}{5} \log _{5} y-\frac{2}{5} \log _{5} z$
D) $\frac{1}{4} \log _{5} x+\frac{1}{3} \log _{5} y-2 \log _{5} z$

Use properties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm whose coefficient is 1 . Where possible, evaluate logarithmic expressions.
11) $\frac{1}{2}\left(\log _{5}(r-4)-\log _{5} r\right)$
A) $\log _{5} \sqrt{\frac{r-4}{2 r}}$
B) $\log _{5} \frac{\sqrt{r-4}}{r}$
C) $\log _{5} \sqrt{\frac{r-4}{r}}$
D) $\log _{5} \frac{\mathrm{r}-4}{\sqrt{\mathrm{r}}}$

Solve the exponential equation. Express the solution set in terms of natural logarithms.

$$
\text { 12) } 4^{x+7}=5
$$

A) $\left\{\frac{\ln 4}{\ln 5}+\ln 7\right\}$
B) $\left\{\frac{\ln 5}{\ln 4}-7\right\}$
C) $\{\ln 5-\ln 4-\ln 7\}$
D) $\left\{\frac{\ln 4}{\ln 5}+7\right\}$

Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.
13) $e^{2 x}+e^{x}-6=0$
13)
A) $0.69,1.10$
B) 0.14
C) $1.10,0.14$
D) 0.69

Solve the logarithmic equation. Be sure to reject any value that is not in the domain of the original logarithmic expressions. Give the exact answer.
14) $\ln \sqrt{x+1}=8$
14)
A) $\left\{\mathrm{e}^{16+1}\right\}$
B) $\left\{\frac{e^{8}}{2}+1\right\}$
C) $\left\{e^{16}-1\right\}$
D) $\left\{e^{8}-1\right\}$

Solve the problem.

15) Find out how long it takes a $\$ 3300$ investment to double if it is invested at 9% compounded quarterly. Round to the nearest tenth of a year. Use the formula $A=P\left(1+\frac{r}{n}\right)^{n t}$.
A) 8.2 years
B) 7.8 years
C) 8 years
D) 7.6 years
16) The population of a certain country is growing at a rate of 2.7% per year. How long will it take for this country's population to double? Use the formula $t=\frac{\ln 2}{k}$, which gives the time, t, for a population with growth rate k, to double. (Round to the nearest whole year.)
A) 28 years
B) 25 years
C) 27 years
D) 26 years

Solve.
17) A fossilized leaf contains 13% of its normal amount of carbon 14 . How old is the fossil (to the nearest year)? Use 5600 years as the half- life of carbon 14 .
A) 36,015
B) 20,685
C) 1123
D) 16,453
18) An endangered species of fish has a population that is decreasing exponentially $\left(A=A_{0} e^{k t}\right)$.
18)
17) \qquad

The population 5 years ago was 1800 . Today, only 800 of the fish are alive. Once the population drops below 100, the situation will be irreversible. When will this happen, according to the model? (Round to the nearest whole year.)
A) 13 years from today
B) 14 years from today
C) 15 years from today
D) 12 years from today

Solve the problem.

19) The logistic growth function $f(t)=\frac{640}{1+5.4 e^{-0.2 t}}$ describes the population of a species of
20)

butterflies t months after they are introduced to a non- threatening habitat. How many butterflies were initially introduced to the habitat?
A) 2 butterflies
B) 640 butterflies
C) 100 butterflies
D) 5 butterflies

Use Newton's Law of Cooling, $T=C+\left(T_{0}-C\right) e^{k t}$, to solve the problem

20) A lasagna removed from the oven has a temperature of $430^{\circ} \mathrm{F}$. It is left sitting in a room that
21) has a temperature of $65^{\circ} \mathrm{F}$. After 7 minutes, the temperature of the lasagna is $300^{\circ} \mathrm{F}$. Use Newton's Law of Cooling to find a model for the temperature of the lasagna, T , after t minutes.
A) $T=65+365 e^{-0.0699 t}$
B) $T=65+365 e^{-0.0629 t}$
C) $T=65+235 e^{-0.0699 t}$
D) $T=300+365 e^{-0.0629 t}$

Rewrite the equation in terms of base express the answer in terms of a natural logarithm, and then round to three decimal places.
21) $y=1.7(0.7)^{x}$
21)
A) $y=0.7 e^{x \ln 1.7, y}=0.7 e^{0.531 x}$
B) $y=1.7 e^{x \ln 0.7}, y=1.7 e^{-0.357 x}$
C) $y=1.7 e^{0.7 x}, y=1.72 .718^{-0.357 x}$
D) $y=(\ln 1.7) e^{x \ln 0.7}, y=0.531 e^{-0.357 x}$

Use Newton's Law of Cooling, $T=C+\left(T_{0}-C\right) e^{k t}$, to solve the problem

22) A tub of ice cream initially has a temperature of $25^{\circ} \mathrm{F}$. It is left to thaw in a room that has a 22) temperature of $72^{\circ} \mathrm{F}$. After 10 minutes, the temperature of the ice cream has risen to $33^{\circ} \mathrm{F}$. After how many minutes will the temperature of the ice cream be $54^{\circ} \mathrm{F}$?
A) 51 min
B) 55 min
C) 63 min
D) 47 min
